N, n, dimensionless complexes introduced into (5); v, dimensionless volume; v, parameter introduced into (5);
zx, dimensionless bed height in steady fluidized state; w, circular frequency.
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EXACT SOLUTION OF COMBINED HEAT- AND MASS-TRANSFER
PROBLEM DURING FILM ABSORPTION

N. I. Grigor'eva and V. E. Nakoryakov UDC 536.248.2

Exact solutions of the system of equations of heat and mass transfer accompanying absorption
of vapor by a liquid film are obtained. Expressions for the main characteristics of heat and
mass transfer are obtained.

Numerous processes used in chemistry, refrigeration, etc. entail the absorption of vapor by a liquid
solution. A characteristic feature of such processes is the combined transfer of heat and absorbate in the
liquid. In practical engineering calculations, however, heat- and mass~transfer processes are usually con-
sidered separately.

In the present paper we use a simple model to investigate the mutual effect of heat transfer and diffusion
processes during absorption by a film.

The treatment of the problem of combined heat and mass transfer during absorption of a pure (with no
admixture of gas) vapor by a film of solution flowing down a vertical wall is based on the following assump-
tions:

1) the wall is isothermal and impermeable for the absorbed substance;

2) the film thickness § is constant;

3) the flow of liquid is laminar;

4) at the liquid—vapor interface the "absorbate—liquid solution® system is in a state of saturation;
5) wave processes in the liquid do not affect heat oi‘ mass transfer;

6) all the physical parameters of the problem (thermal diffusivity, diffusion coefficient etc.) are constant
in the considered ranges of temperature and pressure.

As a model representing the state of saturation we select a linear relation between the concentration and
temperature

C=dT +b.
The coefficients d and b are determined by the vapor pressure. We introduce a Cartesian coordinate system
(x', vV, whose x' axis coincides in direction with the velocity v of liquid in the film and whose coordinate
origin lies on the solid wall. We assume that in the cross section x'=0 the liquid temperature T, and concen~
tration Cy are constant over the cross section, and C; is less than the saturation value corresponding to
temperature Ty, i.e., Cyj<dTy+b.

We solve the problem on the assumption that v=const. In dimensionless form the system of equations
representing heat and mass transfer in the film and the boundary conditions are as follows:

Institute of Thermophysics, Siberian Branch of the Academy of Sciences of the USSR, Special Design Office for
Power and Chemical Plant Machinery, Novosibirsk. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 33,
No. 5, pp. 893-898, November, 1977. Original article submitted October 28, 1976.
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loc_ 1 ac
{ ox Le Oy?
T, g) =M= 1 — Lo (2)
TO
CO, p=M=1- 4w+t . (3)
o
T(x, 0)=0; 4)
L0l 5)
Y |y=0
Cx, )= 4Ty T, ) (6)
CO
oy _Ka.C o€ )
Gy y==1 Le dTO ay ly=1

Here Ka= rad/cp — a dimensionless complex — is an analog of the phase-transition criterion, since 1/d has the
dimension of temperature.

Condition (7) expresses the fact that all the heat released by absorption is expended on heating of the
liquid by conduction.

The system of equations (1) with boundary conditions (2)-(7) is solved by the Fourier method; i.e., the
solutions are represented in the form of expansions in series of eigenfunctions

=N A0 @Y ), ®)

k3

¢ =3 B.x? ()P (@) ®)

From the system of equations (1) and boundary conditions (4) and (5) we obtain
Vi () = sin (k) Yi () = cos (Ve k,4), (10)
XD () = X () = exp(— k), 11)
where k, are the eigenvalues.
Conditions (6) and (7) give the following equalities:

B; aT, yH (1

o — ) (12)
A, c, Y&
; dT, v,
B, _Le dT, v (13)
4, Ka ¢, Y/®()
from which we obtain the transcendental equation for the eigenvalues ky
YL ()Y, () _ Le
P My 1) Ka
or
— VLu
Fky) = tg (k) tg(Vie &)+ ’{{a“ =0. (14)

To calculate the expansion coefficients A, and By we obtain the orthogonality relation for the eigenfunctions.

Since we have the following equations for Yim and Yj(1)

v LBy =0, ViU LRV =0 @),
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by multiplying them respectively by v.() angd Yi(i), subtracting the obtained equalities from one another, and

integrating with respect to y from 0 to 1, using the condition Yi,j I)(0) =0 [condition (4)], we obtain the following
equality:

1
(b — ) | YUYy = ¥ () YT () — Y (1) YD (), (15)
]

Similarly, using condition Y} j(z) (0) =0 {condition (5)], we obtain
3
1
Lu(k,—ky) [ YOV Py = Y/ ) Y ) — Y2 (Y (. (16)
0
We multiply the left-hand side of (16) by
B, B; €, Ka (,

A, A; dT, Lu dT,

The equality still holds if, using relations (12) and (13), we multiply the first term on the right-hand side by

v vty

Y ),vi'(l)(l) Y;l)(l) .
v, vET(

OB ST
1
(b, — k) g VIOV Oy = v O W ¥ a) v ) v ), an
6
Comparing (15) and (17), we obtain the required orthogonality relation in the form

and the second term by

Bi BJ' CO Ka CO

A, A, 4T, dT,

1 R l
A4, E yiVyidy — B,B; Ka -0 \ Yy Pdy = 0. ' (18)
. i daTs ’
0 0

From the initial conditions (2) and (3) and relation (18) we derive the following expressions for A, and By:

: epy
M, \ y}li ]dy—M,_, Ka C, Y(,,n)(l) (z)dy
‘ dTﬂ Yn“ (1) R
0

n

1 0
Il“ I‘ V?(l) /_l‘ H
S y"—:(”dy___Ka . ;l(‘) (1) \ Y;lz(Q)dy
. ISRV
Q 0

dT, v 1)
no m‘ n-

After calculation of the integrals, using expressions (10) we finally obtain

A, ~f.'4{(1——?”—)(1—c05k,,)—(1— ATy b ) X

| o Co
Ka C, . o I . Ka sin?k e oo ]
W= sink, tg) Le £, 1/ {2k, —sin2k) — -——=——L— (21 Le k, -sIN21 Le k), 19
Vie dT, g Le }/ l( 1 oV e k”( e e ){ (19)
dT, sink,

e s S 20
C, cosViek, . (20)

The solutions obtained in this way enable us to calculate all the characteristics of the heat- and mass-transfer
process: the heat and mass fluxes through the film surface, the heat flux through the solid wall, and the
temperature and concentration averaged over the cross section

§

Qps = _gi“é_\ = 2 A, exp(— kix) V.1 (1) 2 A, exp (— kix) k, cosk,; (21)
}‘TO ly=b n n
! 3 4 9
Qnw — 281 S exp(— k20 VD0 D A, exp (— K b (22)
/»TO !yzo n n
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Fig. 1 Fig. 2

Fig. 1. Temperature and concentration on film surface as func-
tion of x: 1) temperature; II) concentration. The solid line is the
exact solution, the dashed line is the approximate solution [1].

x=(1/RePr) - (xY6).

Fig. 2. Variation of dimensionless heat and mass fluxes along
film: 1) heat flux through solid wall (exact solution); II) heat flux
through film surface (exact solution); III) heat flux through film
(approximate solution [1]); IV) mass flux through film surface
{exact solution); V) mass flux through film surface (approximate
solution [1]).

L)ﬂ: . \‘ B exn( k'-’_ y’(‘_’) 1
U pel s Bees koY)
- ——:B“ exp( -/?3‘\')! Le k, sin| Le k. (23)
;r A T
T A - Tdy -.Y -
v II‘O 8T1) 5 v Tu
it
“ ‘An R DN e b A
— o exp(—kx){cosk, -~ 1); (24)
Cow S0 gy ATl ® Lox
G oCy C, | Le
[0
Q B 9 . oo
X }_‘A exp(--kix)sink, | Le . (25)

Thus, all the characteristies of the heat- and mass-transfer process within the film are determined by the four
criteria Le, Re, Pr, and Ka and the parameters characterizing the initial state of the film (T, Cy, Ty, d, b).

Relations (14}, (19)-(25) were used for specific calculations.

To obtain the numerical results in each case we tested the practical convergence of the respective expan-
sions. For instance, to obtain the results shown in Figs. 1 and 2 we summed 30, 40, and 50 terms of the series.
We found that all the characteristics calculated by using 40 and 50 terms agreed to within 1072,

For Le=1 the roots of Eq. (14) are expressed in explicit form

k, . arctg ‘/——Klé—i»- qan—N,n 1,2, ...

For Le 2 1 Eq. {(14) must be solved numerically. To simplify the solution we considered the case where
vLe is a whole number. Then f(kp) is a periodic function with period 7 and, hence, for the determination of all
the roots it is sufficient to solve Eq. (14) on the interval [0, 7].

Figures 1 and 2 give some results of calculations for parameters characteristic of lithium bromide
absorbers and compare the exact solutions with the approximate solutions that we obtained in [1}.
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NOTATION

’_f temperature, T= (T - TW)/TO, dimensionless temperature; E concentration of absorbate in solution
(mass fractlon) Ty, wall temperature; d, b, constants determining state of saturation on liquid—vapor inter-
face; C=(C — dTy, — b)/Cy, dimensionless concentration; y=y¥5; x=x"q/6’= (1/RePr) - (xB); Le=a/D, Lewis
number; Pr=yp/g, Prandtl number; Re=Vs/y, Reynolds number; a, thermal diffusivity; D, diffusion coefficient;
ry, heat of absorption; cp, spe01f10 heat; A, thermal conductivity; », viscosity; p, density of solution; gp, gm,
dimensional heat and mass fluxes, respectively; T ave Cay» average values of temperature and concentration
over cross section of film; Qpg, Qhyw, dimensionless heat fluxes through film surface and solid wall; Quy,
dimensionless mass flux through film surface.
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THEORY OF REACTION DIFFUSION FOR BODIES OF PLANE,
CYLINDRICAL, AND SPHERICAL SYMMETRY

Yu. M. Grigor'ev, S. L. Kharatyan, UDC 669:532.72
Z 8. Andrianova, A. N. Ivanova,
and A G. Merzhanov

A solution of the nonstationary Stefan problem is presented for bodies of plane, cylindrical,
and spherical symmetry in application to processes of diffusion interaction between metals
and a gaseous oxidative medium.

The kinetics of metal interaction with gases is usually studied (see [1], for instance) by gravimetric (by
the change in specimen weight), volumetric (by the quantity of absorbed gas), metallographic (by the periodic
measurements of the thickness of the reaction-product films), and calorimetric (by the quantity of heat liberated
by the reaction) methods. Hence, specimens of a different geometric shape (plates, wires, spherical particles,
etc.) were used in tests. In this connection, it is interesting to analyze the question of the influence of the
geometric shape of the specimens used on the regularity of reaction diffusion. Some results of such an analysis
based on an assumption of a stationary distribution of the reagent concentration in the product film are con-
tained in [2-4]. This question is analyzed in this paper in the general case of nonstationarity of mass transfer
through the reaction-product film.

§1l. Statement of the Problem

Within the framework of the classical theory of reaction diffusion [5], whichis based on the assumption of
the limiting role of transfer of the gaseous reagent through the reaction-product film, the process is described
by a nonlinear Stefan problem, which has the following form for bodies of finite size but different geometric
shape

ot ox2 ' x Ox
t=0c=rc,— 2“52 (R—x), R—r=e &R, 1.2)
x=R ¢c=¢, (1.3)
X=1r ¢=20, (1.4)
d(R—r) dc |
L =D . 1.
T O | emr (1.5)

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 33, No. 5, pp. 899-905, November, 1977. Original
article submitted August 30, 1976.
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